Search the Community
Showing results for tags 'integration'.
-
Hi, I am currently doing a project in which I need to capture the acceleration of a pivoted rotating wooden beam. From the acceleration, I need to determine the velocity. I am using Jeff's teapot sketch with the mpu6050 and I have managed to also include the acceleration in the teapotPacket to print acceleration in processing. I know that velocity is the first integral of acceleration. Such integral can be expressed as: v = u + AT, where v is the current velocity, u is the velocity before, A is the acceleration and T is a time interval. This is my code for the velocities in the three directions with sampling time of 1ms: vX = uX + (AX)*0.001; //vX = current velocity in the X direction, uX = velocity in the previous iteration, AX = acceleration in the x direc uX = vX; //setting the current velocity as the previous velocity vY = uY + (AY)*0.001; uY = vY; vZ = uZ + (AZ)*0.001; uZ = vZ; If I move the sensor say in the x direction, acceleration in the x direction increases and when I stop the sensor, acceleration becomes negative and converges to zero, as expected. The velocity seems to be calculated and printed right when increasing from zero to a particular value. Now my problem is, that when I stop moving the sensor, velocity does not go back to zero when the sensor is stationary, but it decreases by a small amount only (say it stops decreasing at 0.5m/s. This gets worse when the sensor is moved faster. It seems like the acceleration is read more than the deceleration (decreasing acceleration) and therefore, less negative values for acceleration are captured. Can anybody help me? Thanks, Hatt
- 11 replies
-
- velocity
- acceleration
-
(and 1 more)
Tagged with: